The Theorem of Pythagoras(毕达哥拉斯定理)
a2+b2=c2 if c is the length of the hypotenuse and a and b are the shorter side lengths of a right-angled triangle.
Magnitude or absolute value(量或绝对值)
∣x∣={x−x if x≥0 if x<0
which is the distance from x to 0 on the real line
Distance between points on the real line(实线上点之间的距离)
∣x−y∣ is the distance between x and y on the real line.
Distance between points on the plane(平面上点之间的距离)
(x1−x2)2+(y1−y2)2 is the distance between points P(x1,y1) and Q(x2,y2) on the xy -plane.
Degrees and radians(度和弧度)
The angle 1∘ equals 180π radians. The angle 1 radian equals (π180)∘.
Common trig values(常见的三角值)
sin30∘=cos60∘=21
sin60∘=cos30∘=23
sin45∘=cos45∘=2
1
tan30∘=3
1
tan60∘=3
tan45∘=1
cos0=1
cosπ=−1
sin2π=1
sin2−π=−1
Equation of a line(直线方程)
The line with slope m and y -intercept k has equation y=mx+k
Equation of a circle(圆的方程)
The circle with centre (a,b) and radius r has equation
(x−a)2+(y−b)2=r2
Area and perimeter of a circle(圆的面积和周长)
A=πr2 and P=2πr
Volume and surface area of a sphere(球体的体积和表面积)
V=34πr3 and S=4πr2
Quadratic formula(二次公式)
The quadratic equation ax2+bx+c=0, where a≠0 has solutions
x=2a−b±b2−4ac
Inverse function(反函数)
If y=f(x) satisfies the horizontal line test then f is invertible with inverse
f−1, which undoes f in the sense that x=f−1(y).
Fractional powers and n th roots(分数幂和n次方根)
x1/2=x
,x1/n=nx
,xm/n=(x1/n)m
Exponential laws(指数定律)
a−x=ax1,axay=ax+y,ayax=ax−y,((ax)z)=axz,(ab)x=axbx
Logs and exponentials undo each other(对数和指数相互求解)
For all x, all positive A and all positive a≠1
loga(ax)=x,lnex=x,alogaA=A,elnA=A.
Logarithmic laws(对数定律)
For all positive x and y, for all positive a≠1, and for all real k,
- loga(xy)=logax+logay,loga(x/y)=logax−logay,loga(xk)=klogax
- ln(xy)=lnx+lny,ln(x/y)=lnx−lny,ln(xk)=klnx
- ax=exlna,logax=lnalnx
Exponential growth and decay(指数增长和衰减)
y=f(x)=Aekx where A>0, and k>0 for exponential growth, and k<0 for exponential decay.
Logistic function(逻辑函数)
y=f(x)=1+Ke−kxM for constants M,K,k>0
Average rate of change(平均变化率)
For y=f(x) defined on the interval [a,b], where a<b, the average rate of change is b−af(b)−f(a)
Derivative(导数)
y′=dxdy=f′(x)=h→0limhf(x+h)−f(x)=Δx→0limΔxΔy
Rules of differentiation(微分法则)
(uv)′=uv′+vu′( Product Rule )
(vu)′=v2vu′−uv′( Quotient Rule )
dxdy=dudydxdu (Chain Rule)
Trick of Gauss(高斯算法)
∑i=1ni=1+2+…+n=2n(n+1)
Even and odd functions(偶函数和奇函数)
f is even if f(x)=f(−x) and odd if f(−x)=−f(x). If f is odd then ∫−aaf(x)dx=0. If f is even then ∫−aaf(x)dx=2∫0af(x)dx
Standard integrals(标准积分)
∫xndx=n+1xn+1+C(n≠−1)
∫xdx=ln∣x∣+C
∫exdx=ex+C
∫sinxdx=−cosx+C
∫cosxdx=sinx+C
∫sec2xdx=tanx+C
Fundamental Theorem of Calculus(微积分基本定理)
If y=f(x) is a continuous function defined on a closed interval [a,b] and F(x) is any antiderivative of f(x) with respect to x then
∫abf(x)dx=F(b)−F(a)
Integration by substitution(换元积分法)
∫(f(u)dxdu)dx=∫f(u)du
∫f(g(x))g′(x)dx=∫f(u)du
∫abf(g(x))g′(x)dx=∫g(a)g(b)f(u)du
0 条评论
来做第一个留言的人吧!