什么是行列式

1223( 二阶行列式 )\begin{aligned}\left|\begin{array}{ll}{1} & {2} \\ {2} & {3}\end{array}\right| \end{aligned} \quad(\text { 二阶行列式 })

123234457( 三阶行列式 )\left|\begin{array}{lll}{1} & {2} & {3} \\ {2} & {3} & {4} \\ {4} & {5} & {7}\end{array}\right| \quad(\text { 三阶行列式 })

123423454578891012( 四阶行列式 )\left|\begin{array}{cccc}{1} & {2} & {3} & {4} \\ {2} & {3} & {4} & {5} \\ {4} & {5} & {7} & {8} \\ {8} & {9} & {10} & {12}\end{array}\right| \quad(\text { 四阶行列式 })

求二阶行列式

二阶行列式只需要把对角线的数值相乘然后相减,例如:

1223=1×32×2=1\left|\begin{array}{ll}{1} & {2} \\ {2} & {3}\end{array}\right|=1 \times 3-2 \times 2=-1

3456=3×64×5=2\left|\begin{array}{ll}{3} & {4} \\ {5} & {6}\end{array}\right|=3 \times 6-4 \times 5=-2

求多阶行列式

先将“左上开始的对角线”左上开始的对角线下面的数字都消成 0,例如:

1234012300110001\left|\begin{array}{cccc}{1} & {2} & {3} & {4} \\ {0} & {-1} & {-2} & {-3} \\ {0} & {0} & {1} & {1} \\ {0} & {0} & {0} & {1}\end{array}\right|

然后将“左上开始的对角线”的值相乘,得到结果。

计算过程中,有以下性质可以使用:

  • 某行(列)加上或减去另一行(列)的几倍,行列式不变
    例如:

    123234457=r22r112322×132×242×3457=123012457\left|\begin{array}{lll}{1} & {2} & {3} \\ {2} & {3} & {4} \\ {4} & {5} & {7}\end{array}\right| \stackrel{ \mathbf{r}_{2} -2 \mathbf{r}_{1} }{=} \left|\begin{array}{ccc}{1} & {2} & {3} \\ {2-2 \times 1} & {3-2 \times 2} & {4-2 \times 3} \\ {4} & {5} & {7}\end{array}\right|=\left|\begin{array}{ccc}{1} & {2} & {3} \\ {0} & {-1} & {-2} \\ {4} & {5} & {7}\end{array}\right|

  • 某行(列)乘 k,等于 k 乘此行列式
    比如有以下行列式等于-1:

    123423454578891012=1\left|\begin{array}{cccc}{1} & {2} & {3} & {4} \\ {2} & {3} & {4} & {5} \\ {4} & {5} & {7} & {8} \\ {8} & {9} & {10} & {12}\end{array}\right|=-1

    求下面这个行列式

    2468234512152124891012\left|\begin{array}{cccc}{2} & {4} & {6} & {8} \\ {2} & {3} & {4} & {5} \\ {12} & {15} & {21} & {24} \\ {8} & {9} & {10} & {12}\end{array}\right|

    根据该性质,我们可以得到:

    2468234512152124891012=2×3×123423454578891012=2×3×(1)=6\left|\begin{array}{cccc}{2} & {4} & {6} & {8} \\ {2} & {3} & {4} & {5} \\ {12} & {15} & {21} & {24} \\ {8} & {9} & {10} & {12}\end{array}\right|=2 \times 3 \times\left|\begin{array}{cccc}{1} & {2} & {3} & {4} \\ {2} & {3} & {4} & {5} \\ {4} & {5} & {7} & {8} \\ {8} & {9} & {10} & {12}\end{array}\right|=2 \times 3 \times(-1)=-6

  • 互换两行(列),行列式变号
    例如,已知下面这个行列式:

    123423454578891012=1\left|\begin{array}{cccc}{1} & {2} & {3} & {4} \\ {2} & {3} & {4} & {5} \\ {4} & {5} & {7} & {8} \\ {8} & {9} & {10} & {12}\end{array}\right|=-1

    求:

    234512344578891012\left|\begin{array}{cccc}{2} & {3} & {4} & {5} \\ {1} & {2} & {3} & {4} \\ {4} & {5} & {7} & {8} \\ {8} & {9} & {10} & {12}\end{array}\right|

    可以看到这两个行列式第一行和第二行互换,第三行和第四行相同。所以:

    234512344578891012=r1r21×123423454578891012=1×(1)=1\left|\begin{array}{llll}{2} & {3} & {4} & {5} \\ {1} & {2} & {3} & {4} \\ {4} & {5} & {7} & {8} \\ {8} & {9} & {10} & {12}\end{array}\right| \stackrel{ \mathbf{r}_{1} \leftrightarrow \mathbf{r}_{2} }{=} -1 \times\left|\begin{array}{llll}{1} & {2} & {3} & {4} \\ {2} & {3} & {4} & {5} \\ {4} & {5} & {7} & {8} \\ {8} & {9} & {10} & {12}\end{array}\right|=-1 \times(-1)=1

计算过程可以省略掉一些步骤,直接把过程写到等号下:

行列式的一些公式

1

对于一个 n 行 n 列的行列式:

xaaaxaaax=(xa)n1[x+(n1)a]\left|\begin{array}{cccc}{x} & {a} & {\cdots} & {a} \\ {a} & {x} & {\cdots} & {a} \\ {\vdots} & {\vdots} & {\ddots} & {\vdots} \\ {a} & {a} & {\cdots} & {x}\end{array}\right|=(x-a)^{n-1}[x+(n-1) a]

例如,这个行列式:

2333323333233332\left|\begin{array}{llll}{2} & {3} & {3} & {3} \\ {3} & {2} & {3} & {3} \\ {3} & {3} & {2} & {3} \\ {3} & {3} & {3} & {2}\end{array}\right|

其中 x=2x=2, a=3a=3, n=4n=4,所以根据公式:

2333323333233332=(23)41[2+(41)×3]=11\left|\begin{array}{cccc}{2} & {3} & {3} & {3} \\ {3} & {2} & {3} & {3} \\ {3} & {3} & {2} & {3} \\ {3} & {3} & {3} & {2}\end{array}\right|=(2-3)^{4-1}[2+(4-1) \times 3]=-11

2

111x1x2xnx12x22xn2x1n1x2n1xnn1=(xnxn1)(xnxn2)(xnxn3)(xnx1)×(xn1xn2)(xn1xn3)(xn1x1)××(x2x1)\left|\begin{array}{cccc}{1} & {1} & {\cdots} & {1} \\ {x_{1}} & {x_{2}} & {\cdots} & {x_{n}} \\ {x_{1}^{2}} & {x_{2}^{2}} & {\cdots} & {x_{n}^{2}} \\ {\vdots} & {\vdots} & {\ddots} & {\vdots} \\ {x_{1}^{n-1}} & {x_{2}^{n-1}} & {\cdots} & {x_{n}^{n-1}}\end{array}\right| = \begin{array}{l}{\left(x_{n}-x_{n-1}\right)\left(x_{n}-x_{n-2}\right)\left(x_{n}-x_{n-3}\right) \cdots \cdots\left(x_{n}-x_{1}\right)} \\ {\times\left(x_{n-1}-x_{n-2}\right)\left(x_{n-1}-x_{n-3}\right) \cdots \cdots\left(x_{n-1}-x_{1}\right)} \\ {\times \cdots \cdots} \\ {\times\left(x_{2}-x_{1}\right)}\end{array}

例如:

111134563242526233435363\left|\begin{array}{cccc}{1} & {1} & {1} & {1} \\ {3} & {4} & {5} & {6} \\ {3^{2}} & {4^{2}} & {5^{2}} & {6^{2}} \\ {3^{3}} & {4^{3}} & {5^{3}} & {6^{3}}\end{array}\right|

x1=3x2=4x3=5x4=6n=4\mathrm{x}_{1}=3 \quad \mathrm{x}_{2}=4 \quad \mathrm{x}_{3}=5 \quad \mathrm{x}_{4}=6 \quad \mathrm{n}=4

111134563242526233435363=(65)(64)(63)(54)(53)(43)=12\left|\begin{array}{cccc}{1} & {1} & {1} & {1} \\ {3} & {4} & {5} & {6} \\ {3^{2}} & {4^{2}} & {5^{2}} & {6^{2}} \\ {3^{3}} & {4^{3}} & {5^{3}} & {6^{3}}\end{array}\right|=(6-5)(6-4)(6-3)(5-4)(5-3)(4-3)=12

3

  1. 两行(列)相同或者成比例时,行列式为0
  2. 某行(列)为两项相加减时,行列式可拆成两个行列式相加减

例题:

 已知 a1b1c1a2b2c2a3b3c3=1, 试求 a1+c1b1a1+b1a2+c2b2a2+b2a3+c3b3a3+b3\text { 已知 } \left|\begin{array}{lll}{a_{1}} & {b_{1}} & {c_{1}} \\ {a_{2}} & {b_{2}} & {c_{2}} \\ {a_{3}} & {b_{3}} & {c_{3}}\end{array}\right|=1, \quad \text { 试求 } \left|\begin{array}{lll}{a_{1}+c_{1}} & {b_{1}} & {a_{1}+b_{1}} \\ {a_{2}+c_{2}} & {b_{2}} & {a_{2}+b_{2}} \\ {a_{3}+c_{3}} & {b_{3}} & {a_{3}+b_{3}}\end{array}\right|

解题过程:

a1+c1b1a1+b1a2+c2b2a2+b2a3+c3b3a3+b3=a1b1a1+b1a2b2a2+b2a3b3a3+b3+c1b1a1+b1c2b2a2+b2c3b3a3+b3\left|\begin{array}{lll}{a_{1}+c_{1}} & {b_{1}} & {a_{1}+b_{1}} \\ {a_{2}+c_{2}} & {b_{2}} & {a_{2}+b_{2}} \\ {a_{3}+c_{3}} & {b_{3}} & {a_{3}+b_{3}}\end{array}\right|=\left|\begin{array}{ccc}{a_{1}} & {b_{1}} & {a_{1}+b_{1}} \\ {a_{2}} & {b_{2}} & {a_{2}+b_{2}} \\ {a_{3}} & {b_{3}} & {a_{3}+b_{3}}\end{array}\right|+\left|\begin{array}{ccc}{c_{1}} & {b_{1}} & {a_{1}+b_{1}} \\ {c_{2}} & {b_{2}} & {a_{2}+b_{2}} \\ {c_{3}} & {b_{3}} & {a_{3}+b_{3}}\end{array}\right|

=a1b1a1a2b2a2a3b3a3+a1b1b1a2b2b2a3b3b3+c1b1a1c2b2a2c3b3a3+c1b1b1c2b2b2c3b3b3=\left|\begin{array}{lll}{a_{1}} & {b_{1}} & {a_{1}} \\ {a_{2}} & {b_{2}} & {a_{2}} \\ {a_{3}} & {b_{3}} & {a_{3}}\end{array}\right|+\left|\begin{array}{lll}{a_{1}} & {b_{1}} & {b_{1}} \\ {a_{2}} & {b_{2}} & {b_{2}} \\ {a_{3}} & {b_{3}} & {b_{3}}\end{array}\right|+\left|\begin{array}{lll}{c_{1}} & {b_{1}} & {a_{1}} \\ {c_{2}} & {b_{2}} & {a_{2}} \\ {c_{3}} & {b_{3}} & {a_{3}}\end{array}\right|+\left|\begin{array}{ccc}{c_{1}} & {b_{1}} & {b_{1}} \\ {c_{2}} & {b_{2}} & {b_{2}} \\ {c_{3}} & {b_{3}} & {b_{3}}\end{array}\right|

=0+0+c1b1a1c2b2a2c3b3a3+0=a1b1c1a2b2c2a3b3c3=1=0+0+\left|\begin{array}{ccc}{c_{1}} & {b_{1}} & {a_{1}} \\ {c_{2}} & {b_{2}} & {a_{2}} \\ {c_{3}} & {b_{3}} & {a_{3}}\end{array}\right|+0=-\left|\begin{array}{ccc}{a_{1}} & {b_{1}} & {c_{1}} \\ {a_{2}} & {b_{2}} & {c_{2}} \\ {a_{3}} & {b_{3}} & {c_{3}}\end{array}\right|=-1

4 求余子式,代数余子式

余子式用 MM 表示,代数余子式用 AA 表示。
比如,求 12356791011\left|\begin{array}{ccc}{1} & {2} & {3} \\ {5} & {6} & {7} \\ {9} & {10} & {11}\end{array}\right|a23a_{23} 的余子式,就是求 M23M_{23},求 a23a_{23} 的代数余子式,就是求 A23A_{23}

求余子式 M23M_{23},消掉第二行和第三列,生成一个新行列式,求新行列式的值:

M23=12910=8M12=57911=8\begin{array}{l}{M_{23}=\left|\begin{array}{cc}{1} & {2} \\ {9} & {10}\end{array}\right|=-8} \\ {M_{12}=\left|\begin{array}{cc}{5} & {7} \\ {9} & {11}\end{array}\right|=-8}\end{array}

求代数余子式 A23A_{23},即是余子式 M23M_{23} 的值再乘于 -1 的行加列次方((1)2+3(-1)^{2+3}
):

A23=(1)2+3M23=1×(8)=8A12=(1)1+2M12=1×(8)=8\begin{array}{l}{A_{23}=(-1)^{2+3} \cdot M_{23}=-1 \times(-8)=8} \\ {A_{12}=(-1)^{1+2} \cdot M_{12}=-1 \times(-8)=8}\end{array}

5

D=ai1Ai1+ai2Ai2++ainAin(第i行)D=a1jA1j+a2jA2j++anjAnj(第j行)\begin{array}{l}{D=a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\cdots \cdots+a_{i n} A_{i n}} \quad\text{(第i行)} \\ {D=a_{1 j} A_{1 j}+a_{2 j} A_{2 j}+\cdots \cdots+a_{n j} A_{n j}}\quad\text{(第j行)} \end{array}

例如,取第一行套用上面的行公式:

12356791011=a11A11+a12A12+a13A13\left|\begin{array}{ccc}{1} & {2} & {3} \\ {5} & {6} & {7} \\ {9} & {10} & {11}\end{array}\right|=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}

=a11(1)1+1M11+a12(1)1+2M12+a13(1)1+3M13=a_{11}(-1)^{1+1} M_{11}+a_{12}(-1)^{1+2} M_{12}+a_{13}(-1)^{1+3} M_{13}

=1×(1)1+1×671011+2×(1)1+2×57911+3×(1)1+3×56910=1 \times(-1)^{1+1} \times\left|\begin{array}{cc}{6} & {7} \\ {10} & {11}\end{array}\right|+2 \times(-1)^{1+2} \times\left|\begin{array}{cc}{5} & {7} \\ {9} & {11}\end{array}\right|+3 \times(-1)^{1+3} \times\left|\begin{array}{cc}{5} & {6} \\ {9} & {10}\end{array}\right|

套用上面的列公式:

12356791011=a11A11+a21A21+a31A31\left|\begin{array}{ccc}{1} & {2} & {3} \\ {5} & {6} & {7} \\ {9} & {10} & {11}\end{array}\right|=a_{11} A_{11}+a_{21} A_{21}+a_{31} A_{31}

=a11(1)1+1M11+a21(1)2+1M21+a31(1)3+1M31=a_{11}(-1)^{1+1} M_{11}+a_{21}(-1)^{2+1} M_{21}+a_{31}(-1)^{3+1} M_{31}

=1×(1)1+1×671011+5×(1)2+1×231011+9×(1)3+1×2367=1 \times(-1)^{1+1} \times\left|\begin{array}{cc}{6} & {7} \\ {10} & {11}\end{array}\right|+5 \times(-1)^{2+1} \times\left|\begin{array}{cc}{2} & {3} \\ {10} & {11}\end{array}\right|+9 \times(-1)^{3+1} \times\left|\begin{array}{cc}{2} & {3} \\ {6} & {7}\end{array}\right|

特殊情况,如果有某一行或者某一列有 0,直接用有 0 的那一行来计算:

123405607=2×(1)1+2×4567+0×(1)2+2×1367+0×(1)3+2×1345\left|\begin{array}{lll}{1} & {2} & {3} \\ {4} & {0} & {5} \\ {6} & {0} & {7}\end{array}\right|=2 \times(-1)^{1+2} \times\left|\begin{array}{cc}{4} & {5} \\ {6} & {7}\end{array}\right|+0 \times(-1)^{2+2} \times\left|\begin{array}{cc}{1} & {3} \\ {6} & {7}\end{array}\right|+0 \times(-1)^{3+2} \times\left|\begin{array}{cc}{1} & {3} \\ {4} & {5}\end{array}\right|

=2×(1)1+2×4567=2 \times(-1)^{1+2} \times\left|\begin{array}{ll}{4} & {5} \\ {6} & {7}\end{array}\right|

6 多个 AAMM 相加减

例,已知 D=12345678910111213141516D=\left|\begin{array}{cccc}{1} & {2} & {3} & {4} \\ {5} & {6} & {7} & {8} \\ {9} & {10} & {11} & {12} \\ {13} & {14} & {15} & {16}\end{array}\right|, 求下面 3 个问题:

  1. 3A11+4A12+5A13+6A143 A_{11}+4 A_{12}+5 A_{13}+6 A_{14}
  2. 3A11+4A21+5A31+6A413 A_{11}+4 A_{21}+5 A_{31}+6 A_{41}
  3. 3M11+4M21+5M31+6M413 M_{11}+4 M_{21}+5 M_{31}+6 M_{41}

求所有 AA 相加,说先找出所有 AA 对应的位置,然后用 AA 前面的系数替换这些数,得到一个新的行列式,求新的行列式的值,即是解:

3A11+4A12+5A13+6A14=345656789101112131415163 \mathrm{A}_{11}+4 \mathrm{A}_{12}+5 \mathrm{A}_{13}+6 \mathrm{A}_{14}=\left|\begin{array}{cccc}{3} & {4} & {5} & {6} \\ {5} & {6} & {7} & {8} \\ {9} & {10} & {11} & {12} \\ {13} & {14} & {15} & {16}\end{array}\right|

3A11+4A21+5A31+6A41=323446786141516\begin{array}{llll}{ 3 \mathrm{A}_{11}+4 \mathrm{A}_{21}+5 \mathrm{A}_{31}+6 \mathrm{A}_{41}=} & {\left|\begin{array}{llll}{3} & {2} & {3} & {4} \\ {4} & {6} & {7} & {8} \\ {6} & {14} & {15} & {16}\end{array}\right|}\end{array}

求所有 MM 相加,首先根据 MMAA 的关系,可以将 MM 转化为 AA,然后按照 AA 的求法求解即可:

A11=(1)1+1M11=M11M11=A11A21=(1)2+1M21=M21M21=A21A31=(1)3+1M31=M31M31=A31A41=(1)4+1M41=M41M41=A41\begin{array}{l}{A_{11}=(-1)^{1+1} \cdot M_{11}=M_{11} \quad\rightarrow\quad M_{11}=A_{11}} \\ {A_{21}=(-1)^{2+1} \cdot M_{21}=-M_{21} \quad\rightarrow\quad M_{21}=-A_{21}} \\ {A_{31}=(-1)^{3+1} \cdot M_{31}=M_{31} \quad\rightarrow\quad M_{31}=A_{31}} \\ {A_{41}=(-1)^{4+1} \cdot M_{41}=-M_{41} \quad\rightarrow\quad M_{41}=-A_{41}}\end{array}

3M11+4M21+5M31+6M41=3A114A23+5A336A43\begin{aligned} & 3 \mathrm{M}_{11}+4 \mathrm{M}_{21}+5 \mathrm{M}_{31}+6 \mathrm{M}_{41} = 3 \mathrm{A}_{11}-4 \mathrm{A}_{23}+5 \mathrm{A}_{33}-6 \mathrm{A}_{43} \end{aligned}

7 给一方程组,判断其解的情况

方程组 D0D \neq 0 D=0D=0
齐次(没有常数项) 只有一组零解 有零解与非零解
非齐次(有常数项) 只有一组非零解 有多个解或无解

例如,判断下列方程组是否有唯一解:

{x1+2x2+3x3=04x1+5x2+6x3=07x1+8x2+9x3=0\left\{\begin{aligned} x_{1}+2 x_{2}+3 x_{3} &=0 \\ 4 x_{1}+5 x_{2}+6 x_{3} &=0 \\ 7 x_{1}+8 x_{2}+9 x_{3} &=0 \end{aligned}\right.

把系数提取成行列式:

D=123456789D=\left|\begin{array}{lll}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right|

算行列式的值。根据行列式的值,对照上表即可。

提取行列式时,如果方程组有系数为 0 的未知数,需要补全:

{x1+3x3=0x2+4x3=0x1+5x2=0{x1+0x2+3x3=00x1+x2+4x3=0x1+5x2+0x3=0\left\{\begin{array}{l}{x_{1}+3 x_{3}=0} \\ {x_{2}+4 x_{3}=0} \\ {x_{1}+5 x_{2}=0}\end{array} \Longrightarrow\left\{\begin{array}{l}{x_{1}+0 x_{2}+3 x_{3}=0} \\ {0 x_{1}+x_{2}+4 x_{3}=0} \\ {x_{1}+5 x_{2}+0 x_{3}=0}\end{array}\right.\right.

即是提取出:

D=103014150D=\left|\begin{array}{lll}{1} & {0} & {3} \\ {0} & {1} & {4} \\ {1} & {5} & {0}\end{array}\right|